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ABSTRACT

There have been significant advances in deep learning for music
demixing in recent years. However, there has been little attention
given to how these neural networks can be adapted for real-time
low-latency applications, which could be helpful for hearing aids,
remixing audio streams and live shows. In this paper, we investi-
gate the various challenges involved in adapting current demixing
models in the literature for this use case. Subsequently, inspired by
the Hybrid Demucs architecture, we propose the Hybrid Spectro-
gram Time-domain Audio Separation Network (HS-TasNet), which
utilises the advantages of spectral and waveform domains. For a la-
tency of 23 ms, the HS-TasNet obtains an overall signal-to-distortion
ratio (SDR) of 4.65 on the MusDB test set, and increases to 5.55 with
additional training data. These results demonstrate the potential of
efficient demixing for real-time low-latency music applications.

Index Terms— Real-time, audio source separation, hybrid fea-
tures, TasNet, demix

1. INTRODUCTION

Audio source separation is the process of separating a mixture of
audio into its individual components. This is useful for various ap-
plications such as speech enhancement [1], speech separation [2],
dereverberation [3], and as a pre-processing step for sound event de-
tection [4]. Music source separation (MSS), also popularly known
as demixing or unmixing, enables us to remix the balance within the
music, perhaps to make the vocals louder or to suppress an unwanted
sound, change the spatial location of a musical instrument [5], cre-
ate loops from individual instruments [6], object-based mixing [7] or
even upmix a 2-channel stereo recording to a multi-channel surround
sound system. In recent years, there has been tremendous interest in
using deep learning for MSS, leading to significant improvements
in separation quality. These studies have modelled MSS as a su-
pervised learning problem, where the constituting components are
known beforehand. For example, vocals, drums, bass, and other.
However, the computational cost and latency of these models are
generally high [8, 9], making them suitable for offline tasks and stu-
dio productions, but not for real-time low-latency scenarios.

Before the onset of deep learning, [10] presented Azimuth Dis-
crimination and Resynthesis for real-time MSS. The window and
hop sizes for the short-time Fourier transform (STFT) were set to
93 ms and 23 ms respectively. Therefore, considering the overlap-
add operation of the inverse-STFT, the latency of the algorithm is
93 ms. In [11], a multi-layer perceptron (MLP) with an algorith-
mic latency of 23 ms performed singing voice separation. Their goal
was to remix music for cochlear implant users. Unlike MSS, re-
searchers have widely explored deep learning for real-time speech
separation [2] and enhancement [1]. For STFT-based speech en-
hancement algorithms, typically a latency of 32 ms is observed, due

to the required window size [12, 13]. End-to-end deep learning di-
rectly on raw audio for speech separation has obtained impressive
results with latency as low as 2 ms [12]. However, low-latency MSS
is more challenging due to higher sampling rates, high dependence
on future context, and potentially larger models.

Neural network architectures for MSS can be broadly classified
into spectrogram-based, waveform-based, and hybrid approaches.
Initially, spectrogram-based models only used the magnitude and
discarded the phase [14, 15, 16]. The network predicted the mag-
nitude mask and used the phase of the input mixture for the final
output. The waveform-based models that directly separate raw au-
dio have the advantage of not discarding phase and extracting po-
tentially useful deep features [15, 9]. Furthermore, studies have ex-
plored ways to predict phase [17] and also predict real and imaginary
parts of the spectrogram [18] to obtain state-of-the-art results. Re-
cently, studies have also proposed hybrid frameworks that harness
the advantages of both waveform and spectral domains [19, 20].

In this paper, we investigate real-time MSS with a low-latency
such as 23 ms (frame size of 1024 samples at 44.1kHz). To our
knowledge, this is the first paper that explores deep learning to sepa-
rate vocals, drums, bass, and other in real-time with low-latency. Us-
ing 23 ms was a good starting point because it is large enough for the
Fourier spectrum to capture meaningful spectral features, but small
enough for real-time applications such as cochlear implants [11] and
stereo upmixing [10, 21]. First, we adapt the spectrogram-based
X-UMX [16] and the waveform-based TasNet [2, 22] for low-latency
MSS. When adapting these models for real-time processing, we ob-
serve artifacts and a considerable drop in separation quality. There-
fore, we propose a novel hybrid architecture called the Hybrid Spec-
trogram Time-domain Audio Separation Network (HS-TasNet) that
outperforms both models and demonstrates the potential for efficient
real-time demixing. We perform objective and subjective evaluations
to compare this real-time framework to models designed for offline
processing and obtain competitive results on the MusDB dataset.

2. STATE-OF-THE-ART ARCHITECTURES

Many state-of-the-art models adopt a U-Net-style architecture [9, 14,
17, 23], where the network encodes a large context of input audio
into a latent space representation, and subsequently uses a decoder
to reconstruct the audio. In addition, architectures such as Wave-U-
Net [15] and Demucs [9] utilise past and future contexts of a given
mixture to improve separation performance at the edges. The input
receptive field for such U-Nets is in the range of 2 s to 30 s [15, 20],
which makes it challenging to adapt to low-latency scenarios.

The Open-Unmix (UMX) model [24] is a simple bidirectional
LSTM-based framework that obtained state-of-the-art results on the
MusDB dataset in 2018. It only adopts stacked LSTM layers and
hence, does not depend on a latent space representation like U-Nets.
CrossNet-Open-Unmix (X-UMX) [16] improved the UMX by bridg-

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



ing these independent networks and proposing a novel combina-
tional and multi-domain loss. In order to develop a real-time imple-
mentation of such a model, we can replace the bidirectional LSTM
with a causal unidirectional LSTM.

The time-domain audio separation network (TasNet) [2] de-
signed for real-time speech separation in the waveform domain
obtained state-of-the-art results and surpassed spectrogram-based
approaches for causal and non-causal implementations. The model
adopts an encoder-masker-decoder structure, where the encoder is
a learned 1D convolution that creates a non-negative representation
of the input. The advantage of TasNet is that it is not limited by the
spectral resolution of the STFT and hence, obtains a latency as low
as 5 ms. The non-causal TasNet was adopted by [22] for MSS.

In Conv-TasNet [12], the LSTM layers are replaced by temporal
convolutions. This significantly speeds up the training speed and al-
lows the algorithm to have lower latency due to potentially smaller
kernel sizes [12]. Multiple studies have adopted the Conv-TasNet
for MSS [9, 25] showing promising results. However, for real-time
separation, the disadvantage of Conv-TasNet is that the performance
of the algorithm is sensitive to the input receptive field. As ex-
plained by [12], for 2-speaker separation, the performance of the
algorithm dropped when the receptive field was reduced from 1.5 s
to 0.5 s. Although a large receptive field does not reduce the algo-
rithmic latency, it hinders computational efficiency because a larger
audio block needs to be processed at every time step.

3. PROPOSED MODELS

3.1. Low-Latency Constraints

There are multiple considerations that need to be made when devel-
oping a real-time demixing system. The first factor is algorithmic
latency, which is the amount of context required to output one audio
frame. This could be caused by overlap-add [13] or look-ahead win-
dows [26]. The second factor is computational efficiency, which is
the time taken to process a frame of audio. For instance, if the algo-
rithm uses too many look-behind windows or the network has many
blocks that need to be sequentially processed, then the algorithm is
said to have poor computational efficiency.

To ensure feasibility during real-time deployment we make cer-
tain considerations when designing models. For a given hop size,
the average inference time on 4 CPU cores should be less than 50%
of the hop size, to allow reasonable room for updating audio blocks.
Similar real-time constraints were imposed by the Deep Noise Sup-
pression Challenge at ICASSP 2023 [27]. We are aware that this
may change with increasing computational power in future research,
which is beyond the scope of this study. More details on the hard-
ware used can be found in section 5.2.

3.2. Low-Latency Adaptations

X-UMX [16] is a spectrogram-based model whose output goes
through a Wiener filter [28], to improve separation quality and min-
imise interference between sources. For our causal implementation,
we changed the bidirectional LSTMs to unidirectional LSTMs, re-
duced the window size from 4096 to 1024, and the hop size from
1024 to 512. We were unable to use the Wiener filter for real-time
processing because it adopts an expectation maximization algorithm,
which requires look-ahead windows for good performance [28].
TasNet in [22] used a window size of 220 samples (5 ms at 44.1kHz
sample rate). Although studies state that smaller window sizes lead
to better performance in the TasNet [2, 12], we did not observe the

Fig. 1. Structure of the HS-TasNet. ‘&’, ‘--’, ‘+’, ‘i-’, ‘t-’, and
dotted lines stand for concatenate, split, sum, inverse, transpose and
skip connections respectively.

same trend in this causal setup. Initial experiments of hyperparam-
eter tuning showed that a window size of 1024 performed better
than smaller sizes. This is expected because the neural network has
access to more context of audio at each time step. Therefore, we
adopted window and hop sizes of 1024 and 512 respectively. Simi-
lar to [2, 3], we set the number of hidden units in the unidirectional
LSTMs to 1000 and added an identity skip connection between every
two LSTM layers. The number of basis signals N in the convolu-
tional layer was set to 1500.

The final layer in the TasNet is a transposed convolution com-
prising learned filters. To avoid discontinuities in the audio output,
we applied a Hanning window to the filters when performing the
transposed convolution. This leads to a seamless overlap-add mech-
anism during audio reconstruction. Such an approach has also been
adopted by studies that use analytic filters [29] and sinc filters [30].

3.3. Hybrid Spectrogram TasNet (HS-TasNet)

Our proposed model HS-TasNet is inspired by the hybrid Demucs
architecture [20] that comprises a temporal branch, a spectral branch,
and shared layers. Waveform-based models are well suited to drums
and bass, while spectrogram-based models can be better for vocals
and other [9]. The hybrid framework harnesses the advantages of
both the spectrogram and waveform domains.

Figure 1 illustrates the architecture of the HS-TasNet. The spec-
trogram encoder generates 513 features as the window size is 1024.
The learned convolution encoder generates 1024 basis signals. Each
‘Memory: LSTM’ block in figure 1 consists of two LSTMs with an
identity skip connection added to the output of the second LSTM.
The number of hidden units for the LSTMs in the spectrogram and
learned convolution branches is 500. The combined branch has 1000
hidden units because the features from the individual branches are
concatenated. In the ‘Memory: LSTM’ block after the ‘split’ layer,
the encoded representation is added as a skip connection, instead of
an identity one. Linear fully-connected layers were used to address
any dimension mismatch between layers.

We also propose a computationally cheaper version which we re-
fer to as HS-TasNet-Small. Here, we replace the ‘concatenate’ layer
with a ‘summation’. This way, the number of the LSTM units in the
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combined branch is only 500, instead of 1000. Moreover, in each
‘Memory: LSTM’ block, we use one LSTM instead of two. This
reduces the number of parameters in the model from 42 M to 16 M.

4. EXPERIMENTAL SETUP

Dataset: This study adopts the MusDB-HQ dataset [31] comprising
86 tracks for training, 14 tracks for validation, and 50 tracks for test-
ing. All audio files are stereo at 44.1 kHz sampling rate. We also
trained the models using an internal dataset of 150 songs.
Training Strategy: The implementation of X-UMX to train on
MusDB is openly available in this repository1. We used the same
training pipeline and hyperparameters as the original implementa-
tion, except for changing the window size, hop size, and LSTM from
bidirectional to unidirectional. Please refer to [16, 32] for more de-
tails on the implementation. For the TasNet model, we adopted the
training pipeline by DemucsV2 [9], which is openly available in this
repository2, as it was more optimised to train waveform-based mod-
els. It was optimised using the L1 loss with data augmentations —
channel swapping, random gain, shuffling sources, and pitch/tempo
shifting [24, 9]. The initial learning rate was set to 3×10−4 and was
decayed by 0.5 if the validation loss did not improve for 3 epochs.
Training was stopped if the validation loss did not improve for 10
epochs. We used the same set of parameters to train the HS-TasNet.
Evaluation: To compare our models with the state-of-the-art, we
use signal-to-distortion ratio (SDR), which is popularly adopted in
the literature [9, 15, 23]. The models trained with additional data
were also subjectively evaluated through listening tests, using the
Multiple Stimuli with Hidden Reference and Anchor (MUSHRA)
framework [33]. 16 participants3 were asked to rate 8 pages of 7 ex-
amples each (5 models, a reference and an anchor) — 4 pages were
focused on quality (timbral fidelity and absence of artefacts) and
4 pages were focused on the rejection of interference from remaining
sources. We adapted webMUSHRA [33] to randomly sample exam-
ples from the MusDB test set. The quality anchor was a distorted
version of the reference, using the algorithm presented in [34]. The
interference anchor was the original mixture of audio. ANOVA and
post-hoc Tukey tests were used to conduct statistical analysis.

5. RESULTS

5.1. Evaluation

X-UMX: As presented in table 1, there is a noticeable drop in the
SDR when we exclude Wiener filtering and change the LSTM from
bidirectional to unidirectional. For a real-time demixer with a la-
tency of 93 ms, the overall SDR is 4.57 which is significantly lower
than the original 5.79. For a latency of 23 ms, it further drops to 3.93.
This demonstrates the importance of future context and higher win-
dow sizes in MSS, which is unavailable during real-time processing.
TasNet: As presented in Table 2, TasNet obtained a better SDR than
the X-UMX for a latency of 23 ms. However, as shown in Figure 2,
we observed that the model was unable to effectively generate higher
frequencies in the spectrum. Interestingly, we found that this is asso-
ciated with the loss function because when we use L1 directly in the
waveform domain, there is a risk of overweighting the importance
of lower frequencies [35, 36]. Studies for speech separation have

1https://github.com/asteroid-team/asteroid
2https://github.com/facebookresearch/demucs/tree/v2
3Participants were from L-Acoustics and an informed consent was ob-

tained before the test.

Table 1. The X-UMX model evaluated on MusDB with and without
Wiener filtering (WF). The window size (win.) of the STFT is equal
to the latency of the algorithm. Uni. denotes whether the LSTM is
unidirectional and RT specifies if the algorithm can run in real-time.

WF? Uni? RT? Win.
(ms) All Voc. Dru. Bass Oth.

✓ ✗ ✗ 93 5.79 6.61 6.47 5.43 4.64
✗ ✗ ✗ 93 5.13 6.02 5.62 4.58 4.29

✓ ✓ ✗ 93 5.05 5.73 5.53 4.86 4.09
✗ ✓ ✓ 93 4.57 5.49 4.69 4.13 3.96

✓ ✓ ✗ 23 4.08 4.87 4.66 3.76 3.03
✗ ✓ ✓ 23 3.93 4.65 4.36 3.79 2.92

Fig. 2. Comparison of spectra produced by TasNet, TasNet with
multi-domain loss, HS-TasNet, and the Ground Truth.

demonstrated the superior performance of scale-invariant source-to-
noise ratio (SI-SNR) and scale-dependent SDR over L1/L2 for Tas-
Nets [3, 37]. However, in our experiments with MSS, SI-SNR and
SD-SDR lead to poorer performance and slower convergence. We
believe this might be due to the data augmentation that we have em-
ployed (which was not performed in [22] during training with SI-
SNR) or potentially higher correlation between sources ([3] found
that MSE was better than SI-SNR for dereverberation due to higher
correlation between sources). We also explored the multi-domain
loss [16], which calculates the loss on frequency and time domains.
As shown in Figure 2, this enabled the network to generate higher
frequencies, however, the output had higher leakage between stems
and did not lead to an overall improvement from using L1.
HS-TasNet obtained an overall SDR of 4.65 and surpassed the Tas-
Net’s performance for all four sources. As shown in Figure 2, there
were also no issues with generating higher frequencies. The smaller
version of the HS-TasNet obtains an overall SDR of 4.44. In Table 2,
we present the SDR scores of X-UMX, TasNet, and HS-TasNet com-
pared to the state-of-the-art models. The HS-TasNet scales better to
additional training data. The overall SDR is 5.55 when trained on
additional data, versus 4.92 for the TasNet and 4.10 for the X-UMX.
The HS-TasNet-Small obtains an overall SDR of 5.01, which is still
higher than TasNet and X-UMX.
Listening test results in table 3 show that DemucsV4 significantly
outperforms other models for quality and interference (p < 0.001).
HS-TasNet was significantly better than TasNet (p < 0.005). There
were no significant differences between HS-TasNet, DemucsV2, and
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Table 2. Comparing our low-latency implementations of X-UMX, TasNet, and HS-TasNet to the state-of-the-art models. ‘Extra’ stands for
how much training data in addition to MusDB is used. 1-core, 4-core, and GPU mention the time taken by the network to process 23 ms of
audio using the respective hardware averaged across 1000 iterations. † indicates from current work.

Architecture All Vocals Drums Bass Other Extra? Latency
(ms) Param. 1-core

(ms)
4-core
(ms)

GPU
(ms)

Non-causal models

Conv-TasNet [9] 5.73 6.43 6.02 6.20 4.27 ✗ 2,000 9 M 52.29 46.50 16.77
X-UMX [16] 5.79 6.61 6.47 5.43 4.64 ✗ 8,000 36 M - - -

DemucsV2 [9] 6.28 6.84 6.86 7.01 4.42 ✗ 8,000 288 M - - -
DemucsV4 [23] 7.52 7.93 7.94 8.48 5.72 ✗ 7,800 41 M - - -

Non-causal models
with extra data

Conv-TasNet [9] 6.32 6.74 7.11 7.00 4.44 150 2,000 9 M 52.29 46.50 16.77
X-UMX [32] 6.52 7.57 7.39 6.28 4.83 1505 8,000 36 M - - -
TasNet [22] 6.52 7.34 7.68 7.04 4.04 2500 15,000 29 M 11.75 4.20 2.38

DemucsV2 [9] 6.79 7.29 7.58 7.60 4.69 150 8,000 288 M - - -
DemucsV4 [23] 9.20 9.37 10.83 10.47 6.41 800 7,800 41 M - - -

Real-time
Low-Latency models

X-UMX† 3.93 4.65 4.36 3.79 2.92 ✗ 23 31 M 9.85 4.06 1.80
TasNet† 4.40 5.02 4.38 4.73 3.48 ✗ 23 51 M 9.81 4.45 1.90

HS-TasNet† 4.65 5.13 5.22 4.59 3.64 ✗ 23 42 M 9.10 4.26 3.90
HS-TasNet-Small† 4.48 5.21 4.89 4.42 3.42 ✗ 23 16 M 3.98 1.83 2.10

Real-time
Low-Latency models

with extra data

X-UMX† 4.10 4.74 4.62 3.76 3.28 150 23 31 M 9.85 4.06 1.80
TasNet† 4.92 5.22 5.54 5.13 3.78 150 23 51 M 9.81 4.45 1.90

HS-TasNet† 5.55 5.97 6.34 5.62 4.28 150 23 42 M 9.10 4.26 3.90
HS-TasNet-Small† 5.01 5.51 5.75 4.93 3.86 150 23 16 M 3.98 1.83 2.10

Conv-TasNet (p > 0.1). For quality, the HS-TasNet is slightly be-
hind DemucsV2 and equal to Conv-TasNet. HS-TasNet surpasses
DemucsV2 and Conv-TasNet for the rejection of interference from
remaining sources. Audio examples are available here4.

5.2. Inference Times

In Table 2, we also present the time taken by the algorithm to run
on an Intel i7-12850HX CPU on 1-core and 4-cores, and NVIDIA
RTX 3080Ti GPU. The offline versions of TasNet [22] and Conv-
TasNet [9] cannot run in real-time, but we still present the time taken
to process 1024 samples. Although the Conv-TasNet has only 9 M
parameters, it has many blocks that require sequential processing,
which makes it computationally inefficient. The other offline models
like Demucs cannot process a block as small as 1024 due to the large
number of layers. The inference time of all our real-time models is
around 4 ms when running on 4-cores, which gives it enough time to
update within the hop size of 11 ms. The HS-TasNet-Small can run
comfortably even on a single CPU core.

6. CONCLUSION

This paper explored real-time low-latency demixing for vocals,
drums, bass, and other. A few challenges associated with this task
include the non-availability of future context and the poor compu-
tational efficiency of U-Nets. Initially, we adapted the X-UMX and
TasNet models for low-latency demixing. We observed that the per-
formance of the spectrogram-based model drops with reducing the
window size due to the spectral resolution of the STFT. Although
the TasNet performed better than the X-UMX, we observed arti-
facts such as missing higher frequencies. Therefore, we proposed a
novel model called the HS-TasNet that harnesses the advantages of
both spectral and waveform domains. It obtained an overall SDR
of 4.65 when trained only on MusDB and increased to 5.55 with
additional training data. Listening tests showed that the HS-TasNet
significantly outperformed the TasNet and it was comparable to

4https://l-acoustics.github.io/demix.github.io/

Table 3. The mean (± standard deviation) from the listening test.
The upper half is for quality and the bottom half is for rejection of
interference. The bold values indicate the highest value excluding
the reference and DemucsV4. † indicates from current work.

Model All Vocals Drums Bass Other

Reference 99±18 99±2 95±18 100±0 100±0
DemucsV4 [23] 66±26 70±23 67±24 49±29 78±26
DemucsV2 [9] 39±23 34±22 48±27 34±24 40±23

HS-TasNet† 37±23 44±23 39±21 29±21 38±23
Conv-TasNet [9] 37±31 39±21 44±26 21±23 43±31

TasNet† 27±23 26±13 27±18 25±25 30±23
Anchor (Quality) 5±9 4±8 1±3 10±16 5±9

Reference 99±4 99±5 100±0 100±1 99±4
DemucsV4 [23] 78±12 79±15 86±12 64±29 83±12
DemucsV2 [9] 52±22 42±20 57±18 61±21 49±22

HS-TasNet† 58±23 54±22 60±20 62±23 55±23
Conv-TasNet [9] 48±26 36±18 53±25 46±22 56±26

TasNet† 47±22 40±19 45±20 61±25 43±22
Anchor (Interference) 3±25 0±1 1±3 2±5 9±25

DemucsV2, which was the state-of-the-art model two years ago [9].
These results demonstrate the potential of efficient demixing for
real-time low-latency music applications.

This study considered 23 ms to be the required latency for the
demixing models. Future work can evaluate the feasibility of further
reducing the latency, which would make it applicable to a variety of
live music scenarios. Moreover, training strategies such as decom-
posing/reorganizing a Bi-RNN layer [38] and using non-causal mod-
els to train causal models [39] can mitigate the performance degrada-
tion when changing non-causal models to their causal counterparts.
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and Fabian-Robert Stöter, “Musical source separation: An introduc-
tion,” IEEE Signal Process. Mag., vol. 36, no. 1, pp. 31–40, 2018.

[6] Jordan BL Smith and Masataka Goto, “Nonnegative tensor factoriza-
tion for source separation of loops in audio,” in Proc. IEEE ICASSP,
2018, pp. 171–175.

[7] Philip Coleman, Andreas Franck, Jon Francombe, et al., “An audio-
visual system for object-based audio: from recording to listening,”
IEEE Trans. Multimedia, vol. 20, no. 8, pp. 1919–1931, 2018.

[8] Romain Hennequin, Anis Khlif, Felix Voituret, and Manuel Moussal-
lam, “Spleeter: a fast and efficient music source separation tool with
pre-trained models,” J. Open Source Softw., vol. 5, no. 50, pp. 2154,
2020.
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